
Whitepaper: How it works on AWS

Summary

This whitepaper provides a comprehensive guide to the deployment architecture of the website
www.bennwokoye.com, hosted on AWS.

The site is built on HTML, CSS, and JavaScript, leveraging AWS S3 for static content hosting,
Route 53 for domain management, and CloudFront for content distribution and performance
optimization with cache invalidation.

Backend functionality includes AWS API Gateway, Lambda, and SNS, which process user
requests and notifications. The entire infrastructure is managed via Terraform, with the state file
stored in a remote backend on AWS S3/DynamoDB.

The CI/CD pipeline is powered by AWS CodePipeline integrated into GitHub and is
automatically triggered by commits to the main GitHub branch.

Key Components

Static Content Hosting on S3
● Amazon S3 hosts static content (HTML, CSS, JS, and media files), making the website

lightweight, cost-effective, and scalable.
● The S3 bucket is configured to host the website, providing public access to the

necessary content. S3's high availability ensures that users can reliably access the
website from anywhere in the world.

DNS Management with Route 53
● AWS Route 53 handles domain registration and DNS resolution for the website.
● The domain www.bennwokoye.com translates human-readable domain names into IP

addresses browsers use to access the site.
● Route 53 also supports health checks and failover capabilities to ensure the website

remains highly available.

Content Delivery via CloudFront
● Amazon CloudFront, a content delivery network (CDN), enhances the website's

performance by caching content at edge locations closer to users, thereby reducing
latency and load times.

● CloudFront is connected to the S3 bucket as its origin, allowing it to serve static content
efficiently.

● Cache invalidation is implemented to ensure that website updates (new files, changes
to HTML, JS, or CSS) are reflected immediately across all CloudFront edge locations

http://www.bennwokoye.com
http://www.bennwokoye.com
http://www.bennwokoye.com


whenever new commits are made to the GitHub repository. This ensures users always
see the latest version of the website.

API Gateway and Lambda for Backend Logic
● AWS API Gateway acts as the frontend API for any user interaction that requires

server-side logic, in this case, the form submission event handling. API Gateway
exposes a REST API to the static website, enabling dynamic interactions with the
backend.

● AWS Lambda function is triggered by API Gateway to handle business logic in a
serverless manner. Lambda is used to process contact form submission requests.

● Using Lambda eliminates the need to manage servers, and the application can scale
automatically based on traffic.

Notification Handling with SNS
● Amazon SNS (Simple Notification Service) is integrated into the Lambda function to

handle notifications. When a user submits a form, an SNS topic is triggered to email the
website owner or system administrator.

CI/CD Automation with AWS CodePipeline
● The CI/CD pipeline is powered by AWS CodePipeline. Any time a new commit is

pushed to the main branch of the GitHub repository, the CodePipeline is automatically
triggered to initiate the deployment process.

● The pipeline performs the following stages:
1. Source: Fetches the latest code from GitHub.
2. Build: Follow the defined build steps.
3. Deploy: Pushes updated files to the S3 bucket.
4. Invalidate CloudFront Cache: Ensures users are served the latest content from

edge locations.
● This automated workflow ensures that updates are deployed quickly, consistently, and

without manual intervention.

Infrastructure as Code with Terraform
● Terraform defines, manages, and provides the website's infrastructure. Terraform

configuration files describe all AWS resources, including S3, Route 53, CloudFront, API
Gateway, Lambda, and SNS.

● Remote State Backend: Terraform state file is stored in an S3 bucket & DynamoDB,
ensuring that the infrastructure's state is consistent and shareable across development
environments.

● This approach allows the entire infrastructure to be version-controlled, modular, and
reusable. Any changes to the infrastructure are managed through Terraform and can be
rolled out systematically.



Benefits of the Architecture

Cost Efficiency:
● Utilizing S3 for static content hosting and a serverless architecture with Lambda

makes this deployment highly cost-effective. The serverless approach reduces
the need to maintain infrastructure, while CloudFront helps optimize costs related
to content delivery.

High Availability:
● S3 offers 99.99% availability, and CloudFront's global network of edge locations

ensures fast and reliable delivery to users worldwide.
● Route 53 and CloudFront health checks provide additional layers of reliability to

ensure that the website is always available and quickly accessible.
Scalability:

● Lambda functions and CloudFront edge locations scale automatically to handle
increases in traffic, meaning there is no need for manual intervention when traffic
spikes occur.

Performance Optimization:
● By using CloudFront as a CDN, the website's static assets are served from edge

locations closest to users, minimizing latency and improving load times.
Security:

● By using CloudFront with S3, the website benefits from DDoS protection and
AWS Shield, ensuring the content is secure.

● API Gateway offers security features such as throttling and request validation to
protect backend resources from malicious activity.

Automation:
● AWS CodePipeline and Terraform automate deployments and infrastructure

changes, reducing the risk of manual errors and allowing for consistent updates.

Conclusion
The deployment of www.bennwokoye.com on AWS showcases a modern, cost-effective, and
scalable architecture for a static website with a backend logic. The solution ensures high
availability, performance, and security by leveraging services like S3, CloudFront, API Gateway,
Lambda, SNS, and Terraform while automating the deployment process with AWS
CodePipeline.

This architecture represents a proven solution for creating a fast, secure, scalable web
presence. By embracing a serverless, automated deployment pipeline, you reduce operational
overhead and ensure your application can easily handle traffic demands. Whether you're
building a portfolio site, a content hub, or an e-commerce platform, this architecture can be
tailored to meet your unique needs while maintaining robust performance and security.

Send a message or connect with me on LinkedIn if you want to learn more or need expert
guidance in implementing cloud-based infrastructure for your web applications.

http://www.bennwokoye.com
https://www.linkedin.com/in/benjamin-nwokoye/

